
CORRECTING MOMENT SEQUENCES FOR ERRORS ASSOCIATED WITH
ADVECTIVE TRANSPORT

Here the goal is to adjust a single moment or, in the worse case, a few

moments to correct for errors associated with advective transport so as to obtain a valid

(i.e., physically consistent) moment set.

1. Difference tables

A useful approach to data analysis is based on the construction of difference

tables.  These are especially useful for spoting isolated errors in an ordered sequence of

data (Lanczos, 1988), which is just what the moment correction problem requires.

Construction of a difference table is simple and self-evident from inspection of the

individual tables included in Table 1.  Table 1a shows a difference table constructed for a

sequence of six moments µk .  The first column gives the moment index, k.  The second

column gives the 'data' to be evaluated, a sequence of values of ln µk .  The i th-order

difference column is labeled di .  Column 3 contains the first-order differences, d1 , which

are differences of the elements in column 2.  Column 4 contains the second-order

differences, d2 , which are just the first-order differences of the elements in column 3, etc.

The convexity requirement, a necessary condition for a valid moment sequence (Feller,

1971) is satisfied if and only if the second-order differences are non-negative.  In Table

1a the higher-order differences vanish because for this case the ln µk  were assigned as a

quadratic function of k.  Thus the moments of Table 1a follow the pattern of the moments

of a lognormal distribution:  ln ln ( ) /µ µk km ks= + +0
2 2  where µ0  (particles per cc) is

the normalization, m is the logarithm of the ratio of the count median radius (which is

equal to the logarithm of the geometric mean radius) to the unit of length, and s is the

logarithm of the geometric standard deviation (Hinds).  Even multimodal distributions

can have moments which follow the quadratic form (White, 1990; McGraw et al., 1995).

In general we cannot expect that ln µk  will have quadratic form, however it is

reasonable to expect that ln µk  will be smooth function of index k and moment



interpolation methods have been developed that exploit smoothness in ln µk  (Frenklach,

2002; Diemer, 2002).  In Table 1b the third moment has been changed and the modified

sequence violates the required convexity condition. This violation is evident from the

appearance of negative elements in the column of second-order differences, d2 . Note

how the error propagates with amplified oscillation in sign through the higher-order

differences.  Here one sees the useful property of a difference table for spotlighting errors

in sequence of data through inspection of higher-order differences (Lanczos, 1988).  For

sequences of six moments, we find that the third-order differences can be used to both

attribute the error (i.e. identify the index of the miss-assigned moment) and provide an

optimal correction in the sense of minimizing the sum of the squared differences of the

elements in column d2 so as to restore smoothness.  (Note that the sum of squared

differences of elements in column d2  is just the squared magnitude of the vector

a = − −{ , , }3 9 9 , in Table 1b, containing the third-order differences listed in column d3.

For the quadratic case the third-order differences vanish and a 2 0= ).

                       

k lnmk d1 d2 d3 d4 d5
0 0 1 2 0 0 0
1 1 3 2 0 0 n
2 4 5 2 0 n n
3 9 7 2 n n n
4 16 9 n n n n
5 25 n n n n n a

                         

k lnmk d1 d2 d3 d4 d5
0 0 1 2 -3 12 -30
1 1 3 -1 9 -18 n
2 4 2 8 -9 n n
3 6 10 -1 n n n
4 16 9 n n n n
5 25 n n n n n  b

Table 1.  Moment sequences and first-order to fifth-order differences ( 'n' means no
entry):  (a) ln µk  is quadratic in index k.  (b) Same as (a) except that the third moment has
been changed resulting in a failure of the convexity criterion as evidenced by the negative
entries in column d2 .



2. Description of the algorithm

Because corruption of moment sequences through advection tends to be

infrequent, it is likely that this is due improper asignment of one, or at worse a few of the

moments in the sequence.  Accordingly, we want to adjust only these moments.  It is

known that a gross error in a single data point, e.g. the kind of error that can lead to the

inconsistency of a moment sequence, tends to result in large and oscillatory values of the

higher-order differences (Lanczos) (see Table 1).  The following minimum square

gradient algorithm restores a valid moment sequence by adjusting that moment ,µk* ,

which after adjustment maximizes smoothness through minimization of a 2 .  To illustrate

the method, we begin by first determining the response of  a 2  to change in an arbitrary

moment µk  and next determine k *.  (In actual calculations these steps are reversed as

described below.)  Consider a change in the kth moment from an initial value µk ( )0  to a

final value µk ( )1 .  Note by inspection of the difference table that if µ µk k kc( ) ( )1 0=  or,

equivalently, ln ( ) ln ln ( )µ µk k kc1 0= + , then a a bk1 0− = (ln )ck  where a0  and a1 are,

respectively, the initial and final vectors of third-orer differences and the "response

vectors" bk  give the change in the vector of third-order differences to a unit increment in

ln µk .  The latter are as follows:

b b b b b b0 = − = − = − − = − = − ={ , , }; { , , }; { , , }; { , , }; { , , }; { , , }1 0 0 3 1 0 3 3 1 1 3 3 0 1 3 0 0 11 2 3 4 5 ,

    (2.1)

which are related to the entries in the Pascal triangle except for oscillations in sign

(Lanczos, 1988).  Next consider the value of ck  (actually lnck ) for which

a a bk1

2

0

2= + (ln )ck  is minimized.   Inspection of Fig. 1 shows that minimization is

achieved for the condition that a bk0 + (ln )ck  is orthogonal to bk .  The value of ck  that

satisfied this condition is:
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is the cosine of the angle formed between the vectors a0  and bk .  The resulting minimum

squared amplitude satisfies:

a a b a a bk k1

2

0

2

0

2 2
01= + = −[ ]ln cos ( , )ck (2.3)

which is the smallest reduction achievable by changing µk  alone (Fig. 1).

Figure 1:  Disposition of the third order difference vectors before and after correction, a0

and a a bk1 0= + lnck  respectively.

Equation 2.3 shows that maximal smoothness is achieved by adjusting the

moment, µk* , corresponding to that basis vector bk* which gives the largest cos ( , )2
0a bk

for any moment index k.  Thus by determining which k gives the maximum value of

cos ( , )2
0a bk , we obtain the index of the suspect moment, k *.  That moment alone is

corrected using the value of ck* from Eq. 2.2a yielding an updated moment sequence.

Recalling that bk  gives the third-order difference response to a unit change in ln µk , the

actual change in the moment for k k= * is:

a0

lnck bk

a1 = a0+ lnck bk

0



ln ( ) ln ( ) ln ln ( )* * * *
*

*

µ µ µk k k kc1 0 0 0
2= + = −

⋅( )a b

b
k

k

. (2.4)

The other moments having k k≠ * are unchanged.  The new moment sequence gives the

third-order difference vector a1 whose magnitude is in agreement with Eq. 2.3.  The new

moment sequence is in turn tested to insure that negative second-order differences have

been removed.  If not, the process repeated, replacing a0  by a1, and obtaining a2 , etc.

Equation 2.3 assures a reduction in the amplitude of the third order difference vector on

each iteration.  Thus the amplitude approaches zero after many interations, and ln µk

approaches a quadratic function of index k .  In general, we do not anticipate that more

than one or two passes through the algorithm wil be required in order to obtain a valid

moment sequence.

3.  Some examples

A single pass through the algorithm beginning with the moments of Table 1b

restores the quadratic sequence of Table 1a.  Here the maximum value of cos ( , )2
0a bk  in

Eq. 2.3 is unity, which occurs for k* = 3.  Thus a1 0=  for this case, which is the reason

why a single pass through restores the quadratic sequence in ln µk .  Note in Table 1b that

the third-order difference vector is a b30 3 9 9 3= − − = −{ , , } , which is understandable

because b3 gives the response to a unit change in ln µ3  and in passing from Table 1a to

Table 1b this quantity was changed by -3.  To correct the third moment of Table 1b, we

evaluate the right hand side of Eq. 2.2 to obtain

ln ( ) / ( ) /c3 0

2 2
3 3= − ⋅ = − − ⋅ =a b b b b b3 3 3 3 3 .

Finally from Eq. 2.4 we obtain ln ( ) ln ( ) lnµ µ3 3 31 0 6 3 9= + = + =c  showing restoration

of the moment sequence of Table 1a.  In Table 2a, moments 3 and 5 both differ from

those of Table 1a and convexity is not satisfied.  After one pass through the algorithm



(Table 2b) the third moment has changed, but there is still a failure of convexity;

although the sequence is smoother than before.  After a second pass through the

algorithm (Table 2c) the fifth moment has changed and convexity is satisfied for this and

all subsequent iterations.  The moment sequence of Table 2c passes all test and is readily

invertable to get a set of three quadrature abscissas and three weights.  The calculation

would normally be stopped at this point and the updated moments (from Table 1e) taken

as the corrected moments.  However, here for the sake of illustration, we continue

iteration.  After eight interations (Table 2d) one sees clearly a reduction in higher-order

differences, demonstrating convergence, and approach to quadratic form.

k lnmk d1 d2 d3 d4 d5
0 0 1 2 -3 12 -33
1 1 3 -1 9 -21 n
2 4 2 8 -12 n n
3 6 10 -4 n n n
4 16 6 n n n n
5 22 n n n n n a

k lnmk d1 d2 d3 d4 d5
0 0 1 2 0.47368 -1.89472 1.736
1 1 3 2.47368 -1.42104 -0.15792 n
2 4 5.47368 1.05264 -1.57896 n n
3 9.47368 6.52632 -0.52632 n n n
4 16 6 n n n n
5 22 n n n n n b

k lnmk d1 d2 d3 d4 d5
0 0 1 2 0.47368 -1.89472 3.315
1 1 3 2.47368 -1.42104 1.42098 n
2 4 5.47368 1.05264 -0.00006 n n
3 9.47368 6.52632 1.05258 n n n
4 16 7.5789 n n n n
5 23.5789 n n n n n c

k lnmk d1 d2 d3 d4 d5
0 -0.671818 1.67182 1.74917 -0.117472 -0.040598 0.07681
1 1 3.42099 1.6317 -0.15807 0.03622 n
2 4.42099 5.05269 1.47363 -0.12185 n n
3 9.47368 6.52632 1.35178 n n n
4 16 7.8781 n n n n
5 23.8781 n n n n n d

Table 2.  Moment sequences and first-order to fifth-order differences: (a) moments 3 and
5 differ from the quadratic sequence in ln µk , (b) result after a single pass through the
algorithm, (c) result after two passes gives a physically consistent moment set, (d) result
after eight pass showing near convergence to quadratic form.



4.  Necessary and sufficient conditions for a valid moment set

The most common, and easiest to check for, signature of an invalid moment set is

its failure to satisfy convexity.  However, convexity is a necessary but not sufficient

condition for physically consistent moments.   The full (necessary and sufficient)

condition is more complicated but is a well-known result that can be in terms of Gramian

determinants derived form the moments (Gordon, Vorobyev).  The first few determinants

in the series are:

µ
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µ µ

µ µ µ
µ µ µ
µ µ µ
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 ,      ,      ,   ⋅ ⋅ ⋅ (4.1)

The necessary and suffient conditions for a valid moment set are that each of these

determinants be greater than zero.  These conditions for the first few moments

{ , , , }µ µ µ µ0 1 2 3  are equivalent to convexity.  However, for the fourth moment Eq. 4.1

requires the more stringent condition:
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Note that if second determinant of Eq. 4.1 vanishes the distribution function

corresponding to these moments is simply monodisperse and Eq. 4.2, which divides by

this determinant, cannot be used.

Consider, for example a moment sequence (see difference Table 3a below), which

satisfies convexity but fails moment inversion.  Moments 0-3 are fine, and the second-

order differences are all positive, but the fourth moment fails to satisfy the inequality of

Eq. 4.2.  Specifically, we see from the initial moments that convexity requires ln µ4 9≥

while Eq.4.2 requires ln .µ4 9 20908≥ ; thus within the narrow range 9 9 209084< <ln .µ



convexity will be satisfied even though the moment sequence is still unphysical and will

fail the inversion test.  The moment fix algorithm needs to include this possibility, which

can be done using, for example, the computational flow scheme of Fig. 2. Only a single

pass through the algorithm is required to obtain a valid moment set (Table 3b).

Table 3. Moment sequences and first-order to fifth-order differences: (a) these moments
satisfy convexity but fail the moment inversion test, (b) after a single pass through the
algorithm a valid moment set is obtained.

The flow chart of Fig. 2 shows how both convexity and invertability can be

separately handled in the correction algorithm.  Furthermore, an inspection of the chart

shows where diagnostic indicators can be placed to acquire statistics on the cases that

convexity fails, that convexity passes but inversion fails, identify which moments tend to

fail, number of passes through the algorithm required before a valid moment sequence is

obtained, etc.

k ln mk d1 d2 d3 d4 d5

0 0. 1. 1. 0. -0.9 4.5
1 1. 2. 1. -0.9 3.6 n
2 3. 3. 0.1 2.7 n n
3 6. 3.1 2.8 n n n
4 9.1 5.9 n n n n
5 15. n n n n n

k ln mk d1 d2 d3 d4 d5

0 0. 1. 1. 0. 0. 0.
1 1. 2. 1. 0. 0. n
2 3. 3. 1. 0. n n
3 6. 4. 1. n n n
4 10. 5. n n n n
5 15. n n n n n



Figure 2:  Flowchart of the computations used to generate a valid moment set.
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